Infrared and Raman Spectra of Diethoxymethane and Diethoxymethane-d,

By Kenkichi NUKADA

(Received March 30, 1961)

In previous papers, the author has reported the characteristic vibrations of infrared spectra of dialkoxymethanes1) and ethylidene dialkyl ethers2), and more recently the assignment of vibrational spectra of dimethoxymethane (CH₃OCH₂OCH₃) and its deuterated compounds³).

In this paper, infrared and Raman spectra of diethoxymethane (DEM, C₂H₅OCH₂OC₂H₅) and diethoxy methane-d2 (DEM-d2, C2H5OCD2-OC₂H₅) are presented and the assignment of spectra are given by referring to the abovementioned results1-3).

DEM has four internal rotational axes and

there is a possibility of more than two rotational isomers existing in it. The author has examined the rotational isomerism of dialkoxymethanes and concluded that dimethoxymethane, the simplest homologue of DEM, takes one form in vapor and liquid phases near room temperature. He did not obtain such a definite conclusion in the case of DEM, but from the similarity of the change of infrared spectra among various phases between dimethoxymethane and DEM, he suggested that DEM also takes one and the same form in vapor and liquid phases (two ethoxyl groups rotate about 120° in an anticlockwise sense from the central OCO plane) near room temperature⁴). In this paper, the assignment is given with the assumption mentioned above.

¹⁾ K. Nukada, J. Chem. Soc. Japan, Pure Chem. Sec. (Nippon Kagaku Zasshi), 80, 1112 (1959). 2) K. Nukada, ibid., 80, 976 (1959).

³⁾ K. Nukada, Spectrochim. Acta, to be published.

⁴⁾ K. Nukada, This Bulletin, to be published.

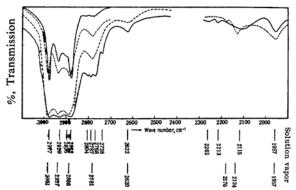


Fig. 1a. Infrared spectra of DEM (C-H and C-D stretching region).

Solid line, CCl₄ solution (25 and 5 vol. %, 0.15 mm.) Dashed line, vapor

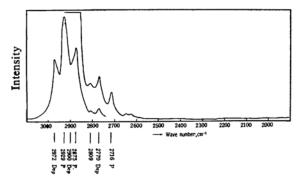


Fig. 1b. Raman spectra of DEM (C-H and C-D stretching region).

Pure liquid

Experimental

DEM and DEM-d₂ were prepared from ethanol and formaldehyde, and from ethanol and formaldehyde-d₂, respectivity. The detailed description of the prepatation will be reported elsewhere⁵).

Infrared spectra were obtained by means of a Perkin Elmer 12C spectrophotometer equipped with a lithium fluoride prism and a 21 spectrophotometer equipped with a sodium chloride or a cesium bromide prism.

Raman spectra were obtained by means of a Cary 81 spectrophotometer. In the case of DEM-d₂, a capillary tube, the capacity of which is 0.2 cc. was used. The degree of depolarization was measured by wrapping two kinds of polaroids around a Raman tube.

The spectra thus obtained are illustrated in Figs. 1-3.

Results and Discussion

C-H and C-D Stretching Vibrations. — The features of the Raman spectra of DEM and

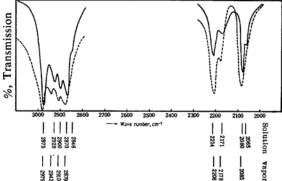


Fig. 1c. Infrared spectra of DEM-d₂ (C-H and C-D stretching region).

Solid line, CCl₄ solution, (10 vol.%, 0.15 mm.) Dashed line, vapor

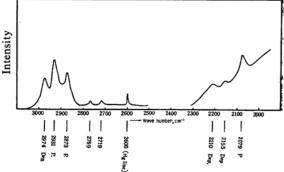


Fig. 1d. Raman spectra of DEM-d₂ (C-H and C-D stretching region).

Pure liquid

DEM-d₂ are quite similar in the 3000 cm⁻¹ region. They have two strongly polarized bands at 2929~2931 cm⁻¹ and at 2873~2875 cm⁻¹, and one depolarized band at 2972~2974 cm⁻¹. The features of the infrared spectra are, on the other hand, slightly different from each other. Thus, the intensity ratios of the bands at 2928~2929 cm⁻¹ to those at 2896~2900 cm⁻¹ are different in these two compounds.

The strongest infrared bands at $2977\sim2975$ cm⁻¹ in DEM and DEM-d₂ (the corresponding Raman bands being strongly depolarized) are assigned to the asymmetrical methyl stretching of the ethoxyl group²).

The strong infrared bands at 2870~2878 cm⁻¹, having corresponding strongly polarized Raman bands, in DEM and DEM-d₂ are assigned to the symmetrical methyl stretching¹⁾.

In dimethoxymethane-d₆ (CD₃OCH₂OCD₃), bands at 2932 and 2887 cm⁻¹ are assigned respectively to the asymmetrical and the symmetrical methylene stretchings of OCH₂O group³). The corresponding CD₂ stretchings

⁵⁾ K. Nukada, Reports Gov. Chem. Ind. Research Inst. Tokyo, to be published.

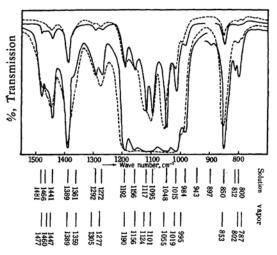


Fig. 2a. Infrared spectra of DEM (finger print region).

Solid line, CCl₄ and CS₂ solution (0.15 mm., 20 and 3 vol.%), dashed line, vapor

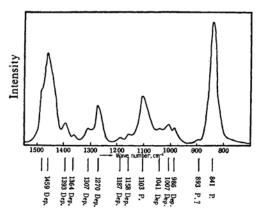


Fig. 2b. Raman spectrum of DEM (finger print region).

Pure liquid

are found in dimethoxymethane-d₂ (CH₃OCD₂. OCH₃) to be at 2188 (strongly depolarized in Raman) and at 2080 cm⁻¹ (strongly polarized in Raman), respectively. In DEM-d₂, two strong infrared bands appear at 2214 corresponding Raman band being strongly depolarized) and at 2080 cm⁻¹ (the corresponding Raman band being strongly polarized); hence they are assigned to the asymmetrical and the symmetrical CD2 stretchings of the OCD2O group, respectivery, on the analogy of the above mentioned results. The asymmetrical and symmetrical methylene stretchings of the OCH2O group in DEM are then expected to appear near 2930 and 2890 cm⁻¹, respectively. The relative intensity of the infrared band at 2928~2929 cm⁻¹ becomes lower in DEM-d₂ as compared with the one in

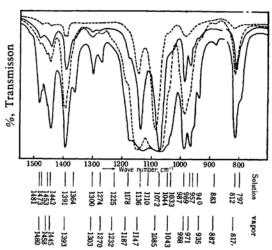


Fig. 2c. Infrared spectra of DEM-d₂ (finger print region).

Solid line, CCl₄ and CS₂ solution, (0.15 mm., 20 and 3 vol.%), dashed line, vapor

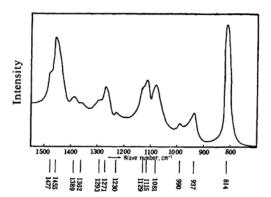


Fig. 2d. Raman Spectrum of DEM-d₂ (finger print region).

Pure liquid

DEM, while that at 2870~2878 cm⁻¹ does not chow an appreciable change between DEM and DEM-d2. Then it is certain that the asymmetrical methylene stretching of the OCH2O group exists at 2930 cm⁻¹ in DEM, and that it is probably overlapped by the other type of vibration. The overlapping band is presumably the asymmetrical methylene stretching of ethoxy group²). The bands at 2870~2878 cm⁻¹ in DEM and DEM-d₂ are assigned to the symmetrical methylene stretching of the ethoxyl group, overlapped by the symmetrical methylene stretching of the OCH₂O group, as described above, and also by the symmetrical methyl stretching of the ethoxyl group. Since the intensity of these bands does not alter appreciably between DEM DEM-d2, the absorbance of the symmetrical methylene stretching

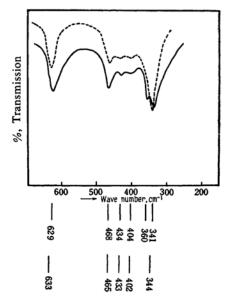


Fig. 3a. Infrared spectra of DEM (skeletal deformation region).

Solid line, pure liquid (0.2 mm.), dashed line vapor

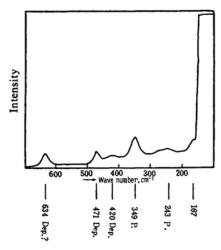


Fig. 3b. Raman spectrum of DEM (skeletal deformation region).

Pure liquid

of the OCH₂O group is concluded to be small. The possibility of the Fermi resonance occurring between two types of methylene groups may be small, because the interaction between them is believed to be negligible.

The remaining weak bands may be overtone and/or combination.

Skeletal Stretching and C-H and C-D Deformation Vibrations. — The appearance of the spectra of DEM and DEM-d₂ is quite similar in the range between 1480 and 1270 cm⁻¹ both in infrared and Raman. Therefore, the absorb-

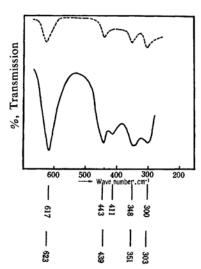


Fig. 3c. Infrared spectra of DEM-d₂ (skeletal deformation region).

Pure liquid (0.2 mm.)

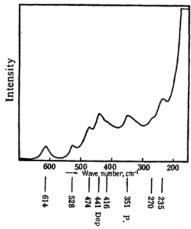


Fig. 3d. Raman spectrum of DEM-d₂ (skeletal deformation region).

Pure liquid

ance of the ethoxyl group is more predominant than that of the OCH_2O group in this frequency region.

Medium infrared and Raman bands appear at $1477 \sim 1481 \, \mathrm{cm^{-1}}$ both in DEM and DEM-d₂. In ethylidene diethyl ether (C₂H₅OCH(CH₃) · OC₂H₅), ethylidene methyl ethyl ether (CH₃OCH(CH₃)OC₂H₅), 2, 2-diethoxypropane (C₂H₅OC(CH₃)₂OC₂H₅)⁶), triethyl orthoformate (HC(OC₂H₅)₃) and in triethyl orthopropionate

⁶⁾ K. Nukada, ibid., to be published.

Table I. Vibrational frequencies of diethoxymethane and diethoxymethane-d₂*

DEM				$DEM-d_2$			
IR				IR .			Assignment
Vapor	Liq.	Ramai	n	Vapor	Liq.	Raman	
2981(s)	2977(s)	2972(s)	Den	2979(s)	2975(s)	2974(s) Dep.	asym. CH ₃ stretching
2937(m)	2929(m)	2929(s)	-	2942(m)	2928(m)	2931(s) S. P.	asym. CH ₂ stretching (OCH ₂ O, EtO)
	2896(w)			2910(m)	2900(m)		combination or overtone
2886(m)	2878(s)	2875(s)	S. P.	2879(s)	2870(s)	2873(s) S.P.	(sym. CH ₃ stretching (sym. CH ₂ stretching (OCH ₂ O, EtO)
				2208(s)	2214(s)	2210(w) Dep.	asym. CD ₂ stretching
				2178(m)	2171(m)	2155(w) Dep.	CD ₂ , combination or overtone
				2085(s)	2080(s)	2079(m) S. P.	sym. CD ₂ stretching
				2063(sh)	2065(sh)		CD ₂ , combination or overtone
1477(v₩)	• •	1481 (m,	,	1480(vw)	1481 (m) 1473 (vw)	1477(m, sh)	CH ₂ scissoring (OCH ₂ O, EtO)
1460(vw)		1459(s)	S. Dep.	1458(vw)	1453(vw)	1455(s) S. Dep	
1447(w)	1441 (vw)			1445(w)	1443(m)		EtO, combination or overtone (COCOC)
1389(m)	1389(m)	1393 (m)	•	1393(m)	1391(m)	1389(m)	(sym. CH ₃ deformation (CH ₂ wagging (OCH ₂ O)
1359(vw)	1361 (vw)	1364(w)	-		1364(vw)	1362(w)	CH ₂ wagging (EtO)
1305(w)	1292(w)	1307(w)	_	1303 (vw)	1300(w)	1293(w)	CH ₂ rocking (EtO)
1277(w)	1272(w)	1270(s)	Dep.	1270(vw)	1274(w)	1272(s) Dep.	CH ₂ twisting (EtO)
				1232(vw)	1255(W)	1230(w) P.?	CD ₂ scissoring or twisting+COCOC stretching
1190(m)	1192(m)	1187(w)	Dep.				CH ₂ twisting or wagging (OCH ₂ O)
1156(w)	1156(m)	1158(w)	Dep.				CH ₂ rocking (OCH ₂ O)
1124(m)	1117(s)			1147(s)	1136(s)	1129(w)	asym. COCOC streching
					1110(vvw))1115(s) P.	CD ₂ scissoring or twisting
1101(s)	1095(s)	1103(s)		1085(s)	1072(s)	1081(s)	sym. COCOC stretching
1055(s)	1048(s)	1041 (w)	-	988(m)	987(s)	990(m)	asym. COCOC stretching
1019(m)	1015(s)	1007(m)	~	935(vw)	940(w)	937(m) Dep.	sym. CC stretching
995(w)	984(w)	986(w)		971(w)	969(m)		asym. CC stretching
853(m)	850(m)	841(s)	S. P.	817(w)	812(s)	814(s) S. P.	sym. COCOC stretching
802 (vw)	943(vw) 897(vw) 812(vw)	893(w)	P. ?	887(vw)	883(vw) 797(vw)		
787(vw) 633(s)	800(vw) 629(s)	634(m)	Den 2	623(s)	617(s)	614(m)	asym. COCOC
633(8)	029(8)	034(III)	Dep. :	023(\$)	017(8)		deformation
						528(w) 474(w)	
465(m)	468(s)	471 (m)	Dep.	439(s)	443(s)	441(m) Dep.	sym. COCOC deformation
433(w) 402(w)	434(m) 404(m) 360(w)	420(w)	Dep.		411(m)	416(w)	
344(s)	341(s)	349(m)	S. P.	351(s) 303(m)	348(s) 300(m)	351(m) P.	sym. COCOC deformation
						270(vw)	
		243(w) 167(w)	S. P.			235(w)	sym. OCC deformation

^{*} P. and Dep. mean "polarized" and "depolarized", and S. means "strongly".

(C₂H₅C(OC₂H₅)₃)⁷³, a weak or medium infrared band is observed in this region. But in di-((CH₃)₂CHOCH₂OCHisopropoxymethane (CH₃)₂)⁸, ethylidene dimethyl ether (CH₃· orthoformate OCH(CH₃)OCH₃), trimethyl (HC(OCH₃)₃), trimethyl orthoacetate (CH₃C· (OCH₃)₃) and in trimethyl ortho-n-valerate $(CH_3(CH_2)_3C(OCH_3)_3)^{7}$, no band exists in this region. Hence the bands at 1477~1481 cm⁻¹ are assigned to the methylene vibration of the ethoxyl group, certainly the scissoring vibration. The methylene scissoring of the OCH₂O group can also exist at this frequency3, but the absorbance of the latter may probably smaller than that of the former and it is hard to observe it.

All compounds containing oxygen atoms which the author has studied^{1-4,6-8)} have weak infrared and strong and depolarized Raman bands around 1460 cm⁻¹ except for dimethoxymethane and dimethoxymethane-d₈ (CD₃·OCD₂OCD₃). The last two compounds contain no methyl group, thus the bands in this region should be due to the methyl group. Therefore the bands at 1455~1466 cm⁻¹ (very weak in infrared and strong and depolarized in Raman) in DEM and DEM-d₂ are assigned to the asymmetrical methyl deformation of the ethoxyl group.

The origin of infrared bands at 1440~1443 cm⁻¹ both in DEM and DEM-d₂ is not clear, but they must be due to the vibration of the ethoxyl group, or the combination or overtone of skeletal vibrations.

The medium infrared and polarized Raman bands at $1389\sim1393$ cm⁻¹ both in DEM and DEM-d₂ are assigned to the symmetrical methyl deformation of the ethoxyl group. From the result on dimethoxymethane and its deuterated compounds³ the methylene wagging of the OCH₂O group could exist in this region. So in DEM, these two bands may probably overlap.

The very weak infrared and weak Raman bands at 1359~1362 cm⁻¹ in DEM and DEM-d₂ are assigned to the methylene wagging of the ethoxyl group.

The features of doublet at 1292~1307 cm⁻¹ and 1270~1274 cm⁻¹ do not alter strongly between DEM and DEM-d₂, thus these bands are also due to the ethoxyl group. Of these, the former bands are assigned to the methylene rocking and the latter to the methylene twisting, because the Raman intensity of the latter is greater than that of the former and it is expected that the twisting vibration, the species of which is A, should give a stronger band.

In conclusion, it becomes clear that bands due to the ethoxy group are at $1477 \sim 1481$, $1455 \sim 1466$, $1441 \sim 1443$, $1389 \sim 1393$, $1361 \sim 1364$, $1292 \sim 1307$ and at $1270 \sim 1274$ cm⁻¹ (all the values are those of liquid phase). The skeletal vibrations may not appear in such a high frequency region.

The weak Raman band at 1230 cm⁻¹ (having a corresponding very weak infrared band) in DEM-d₂ may be due to CD₂ vibration coupled with the COCOC skeletal vibration. Since the Raman band is polarized, it is assigned to the CD₂ scissoring or twisting, being coupled with an A type skeletal stretching, to some extent.

The medium bands at $1187 \sim 1192 \, \mathrm{cm}^{-1}$ both in infrared and Raman in DEM disappear in DEM-d₂ (in which a very weak infrared band appears at $1178 \, \mathrm{cm}^{-1}$, though the origin of this band may be different as the intensity is too low). Hence these bands are due to the methylene vibration of the OCH₂O group, probably the twisting or wagging.

The bands at $1156 \sim 1158 \text{ cm}^{-1}$ in DEM both in infrared and Raman disappear in DEM-d₂. In dimethoxymethane and dimethoxymethane-d₆, weak infrared bands at this frequency are assigned to the methylene rocking of the OCH₂O group³. According to these results, these bands are assigned to the methylene rocking of the OCH₂O group.

From the study on dimethoxymethane and its deuterated compounds, the skeletal COCOC stretching should exist between 1150~800 cm⁻¹³). In DEM and DEM-d₂, the additional skeletal stretchings due to CC bonds could exist in this region. But the absorbance of the latter ones may be smaller than that of the former, hence the features of the spectra of DEM and DEM-d₂ are actually similar to those fo dimethoxymethane at this frequency region.

The infrared bands at 1117 and at 1136 cm⁻¹ in DEM and DEM-d₂ are the next strongest bands in the liquid phase, and the corresponding Raman bands are very weak. In dimethoxymethane and its deuterated compounds, the strong infrared bands around 1140 cm⁻¹, the corresponding Raman bands of which are extremely weak, are assigned to the asymmetrical skeletal stretching³). These bands are then assigned to one of the asymmetrical COCOC stretchings.

The Raman band at 1115 cm⁻¹ in DEM-d₂ is due to the OCD₂O methylene vibration. As it is strongly polarized, it may be assigned to the scissoring or twisting being coupled with the symmetrical skeletal stretching to some extent.

The strong infrared band at 1095 cm⁻¹ in

⁷⁾ K. Nukada, J. Chem. Soc. Japan, Pure Chem. Sec. (Nippon Kagaku Zasshi), 81, 1028 (1960).

⁸⁾ K. Nukada, This Bulletin, to be published.

DEM corresponds to the band at 1072 cm⁻¹ in DEM-d₂. As the corresponding Raman bands are strong and strongly polarized (in DEM), these bands are assigned to one of the symmetrical COCOC stretchings.

The strong infrared band appears at 1048 cm⁻¹ in DEM, but no corresponding band exists in DEM-d₂ near that frequency. In DEM-d₂, the remaining band, the intensity of which is rather high, is the band at 987 cm⁻¹. Furthermore the intensity of the corresponding Raman bands is not so high in both cases, thus it is reasonable to correlate the two bands as the same type of skeletal vibration. The remaining modes are one symmetrical and one asymmetrical vibration, but as described in detail later the symmetrical one should appear at 800~850 cm⁻¹ both in DEM and DEM-d₂. Accordingly these bands are assigned to the asymmetrical COCOC stretching.

The bands at 1015 and 984 cm⁻¹ in DEM and those at 940 and 969 cm⁻¹ in DEM-d₂, may be due to CC stretchings. The former ones are assigned to the symmetrical mode and the latter to the asymmetrical one, respectively, since the intensity of the corresponding Raman bands of the former is higher than that of the latter.

The strongest and strongly polarized Raman bands exist at 841 and 814 cm⁻¹ in DEM and DEM-d₂, respectively. In dimethoxymethane, its deuterated compounds33, methoxyethoxymethane and in diisopropoxymethane⁹, there appear the strongest and strongly polarized Raman bands, being assigned to the symmetrical skeletal stretching, between 900 and 800 cm⁻¹. Thus these bands are also definitely assigned to the symmetrical COCOC stretching. Just as in the case of dimethoxymethane and its deuterated compounds3), the corresponding infrared bands are not so strong, and in the vapor phase its intensity becomes lower than that of the liquid phase. As already mentioned in the study of dimethoxymethane, the mode of this vibration is such that two terminal ethoxyl groups vibrate symmetrically and the central OCO group does not move much.

Skeletal Deformation Vibrations. — It is expected that five skeletal angle deformations appear over 200 cm⁻¹ and six torsional vibrations below 250 cm⁻¹. At the present, no infrared band below 280 cm⁻¹ is obtained because of the experimental limitation and Raman band below 200 cm⁻¹ is hardly observable since the strong exiting line disturbs the observation of weak Raman band. All the skeletal defor-

There are three pairs of strong Raman bands in DEM and DEM-d₂, namely at 634 and 614, 471 and 441, and 349 and 351 cm⁻¹. In dimethoxymethane, its deuterated compounds³⁾ and in methoxyethoxymethane⁴⁾, there appear such pairs of Raman bands. The appearance of infrared spectra is also quite similar between DEM and DEM-d₂, that is, three pairs of strong infrared bands appear at the same frequency regions. Hence they are certainly due to the skeletal deformations

Of these, the bands at 349~351 cm⁻¹ are strongly polarized in Raman, so they are assigned to the symmetrical COCOC deformation. As in the case of dimethoxymethane and its deuterated compounds, these are the vibrations all skeletal angles of which move in the same phase.

The degree of depolarization of the remaining two bands is not clear, but on the analogy of dimethoxymethane the bands at 614~634 cm⁻¹ in DEM and DEM-d₂ are assigned to the asymmetrical deformation and the last bands at 441~470 cm⁻¹ to the other symmetrical one, two COC angles and the OCO angle of which vibrate in the opposite phases.

As the Raman bands at 235~243 cm⁻¹ in DEM and DEM-d₂ are strongly polarized, they are assigned to the symmetrical OCC deformation. The assignment of the asymmetrical one is not clear.

The remaining weak bands may be overtone and/or combination of torsional vibrations.

Summary

Infrared spectra between 3000 and 280 cm⁻¹ (vapor and liquid phases) and Raman spectra (liquid phase) of diethoxymethane (C₂H₅· OCH₂OC₂H₅) and of diethoxymethane-d₂ (C₂H₅OCD₂OC₂H₅) were observed and the assignment of the spectra is presented with the assumption that these molecules take one form both in the vapor and liquid phases. In the assignment, that of the homologues such as dimethoxymethane, its deuterated compounds, methoxyethoxymethane and diisopropoxymethane, are taken into consideration.

The author wishes to express his sincere thanks to Dr. Y. Mashiko for his valuable discussions.

Government Chemical Industrial Research Institute of Tokyo Shibuya-ku, Tokyo

mations could then be observed either in infrared or in Raman, while the torsional vibrations are hardly observable.

⁹⁾ K. Nukada, ibid., to be published.